Smoothened antagonists reverse taxane resistance in ovarian cancer.
نویسندگان
چکیده
The hedgehog pathway has been implicated in the formation and maintenance of a variety of malignancies, including ovarian cancer; however, it is unknown whether hedgehog signaling is involved in ovarian cancer chemoresistance. The goal of this study was to determine the effects of antagonizing the hedgehog receptor, Smoothened (Smo), on chemotherapy response in ovarian cancer. Expression of hedgehog pathway members was assessed in three pairs of parental and chemotherapy-resistant ovarian cancer cell lines (A2780ip2/A2780cp20, SKOV3ip1/SKOV3TRip2, HeyA8/HeyA8MDR) using quantitative PCR and Western blot analysis. Cell lines were exposed to increasing concentrations of two different Smo antagonists (cyclopamine, LDE225) alone and in combination with carboplatin or paclitaxel. Selective knockdown of Smo, Gli1, or Gli2 was achieved using siRNA constructs. Cell viability was assessed by MTT assay. A2780cp20 and SKOV3TRip2 orthotopic xenografts were treated with vehicle, LDE225, paclitaxel, or combination therapy. Chemoresistant cell lines showed higher expression (>2-fold, P < 0.05) of hedgehog signaling components compared with their respective parental lines. Smo antagonists sensitized chemotherapy-resistant cell lines to paclitaxel, but not to carboplatin. LDE225 treatment also increased sensitivity of ALDH-positive cells to paclitaxel. A2780cp20 and SKOV3TRip2 xenografts treated with combined LDE225 and paclitaxel had significantly less tumor burden than those treated with vehicle or either agent alone. Increased taxane sensitivity seems to be mediated by a decrease in P-glycoprotein (MDR1) expression. Selective knockdown of Smo, Gli1, or Gli2 all increased taxane sensitivity. Smo antagonists reverse taxane resistance in chemoresistant ovarian cancer models, suggesting combined anti-hedgehog and chemotherapies could provide a useful therapeutic strategy for ovarian cancer.
منابع مشابه
Preclinical Development Smoothened Antagonists Reverse Taxane Resistance in Ovarian Cancer
The hedgehog pathway has been implicated in the formation andmaintenance of a variety of malignancies, including ovarian cancer; however, it is unknown whether hedgehog signaling is involved in ovarian cancer chemoresistance. The goal of this study was to determine the effects of antagonizing the hedgehog receptor, Smoothened (Smo), on chemotherapy response in ovarian cancer. Expression of hedg...
متن کاملProteasome inhibition reverses hedgehog inhibitor and taxane resistance in ovarian cancer
The goal of this study was to determine whether combined targeted therapies, specifically those against the Notch, hedgehog and ubiquitin-proteasome pathways, could overcome ovarian cancer chemoresistance. Chemoresistant ovarian cancer cells were exposed to gamma-secretase inhibitors (GSI-I, Compound E) or the proteasome inhibitor bortezomib, alone and in combination with the hedgehog antagonis...
متن کاملA systematic review of platinum and taxane resistance from bench to clinic: an inverse relationship.
We undertook a systematic review of the pre-clinical and clinical literature for studies investigating the relationship between platinum and taxane resistance. Medline was searched for (1) cell models of acquired drug resistance reporting platinum and taxane sensitivities and (2) clinical trials of platinum or taxane salvage therapy in ovarian cancer. One hundred and thirty-seven models of acqu...
متن کاملA Recurrent Platinum Refractory Ovarian Cancer Patient With a Partial Response After RRx-001 Resensitization to Platinum Doublet
This case report describes the clinical course of a heavily pretreated patient enrolled on the Phase II QUADRUPLE THREAT clinical trial (NCT02489903) with recurrent metastatic epithelial ovarian cancer that was previously treated with a platinum doublet and that benefited from another reintroduction of a platinum doublet after a brief priming period with RRx-001. Platinum-taxane combination is ...
متن کاملTime-staggered inhibition of JNK effectively sensitizes chemoresistant ovarian cancer cells to cisplatin and paclitaxel.
Ovarian cancer is the most lethal gynecological malignancy, for which platinum- and taxane-based chemotherapy plays a major role. Chemoresistance of ovarian cancer poses a major obstacle to the successful management of this devastating disease; however, effective measures to overcome platinum and taxane resistance are yet to be established. In the present study, while investigating the mechanis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer therapeutics
دوره 11 7 شماره
صفحات -
تاریخ انتشار 2012